муниципальное бюджетное общеобразовательное учреждение «Плодовая средняя школа имени Н.А.Волкова»

PACCMOTPEHO:

на заседании школьного М/О протокол № 1 от 31 августа 2023 г.

СОГЛАСОВАНО:

Заместитель директора по УВР Двойкова Л.Н.

31 августа 2023 г.

УТВЕРЖДАЮ:

Директор МБОУ Плодовая СШ

И.Р. Нуртдинов

Приказ № 218 от 31,08.2023 г.

РАБОЧАЯ ПРОГРАММА ПО ФИЗИКЕ

11 КЛАСС

Количество часов: 66

Учитель: Чистов Иван Викторович

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа курса «Физики» для 11 класса МБОУ «Плодовая средняя школа имени Н.А.Волкова» составлена в соответствии со следующими нормативными документами:

- Федеральный закон от 29.12.2012 г. № 273-ФЗ (ред. От 31.07.2020г.) «Об образовании в Российской Федерации» (с изм. и доп., вступил в силу с 01.09.2020)
- ✓ Федеральный государственный образовательный стандарт среднего общего образования (Утверждён приказом Министерства образования и науки Российской Федерации от 17 мая 2012 г. N 413) (ред.11.12.2020)
- ✓ Государственная программа Российской Федерации «Развитие образования» (Утверждена Постановлением Правительства РФ от 26.12.2017 N 1642 (ред. от 22.02.2021) «Об утверждении государственной программы Российской Федерации «Развитие образования» дата обращения: 10.03.2021)
- ✓ Приказ Министерства просвещения Российской Федерации от 18.05.2023 № 371 "Об утверждении федеральной образовательной программы среднего общего образования"
- ✓ СанПиН 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи» №28 от 28.09.2020г.
- ✓ Физика. 10-11 классы: рабочая программа к линии УМК Г. Я. Мякишева, М. А. Петровой, / авт.-сост. М. А. Петрова, И.Г. Куликова Москва, Дрофа 2019г.
- Учебный план МБОУ Плодовая СШ (рассмотрен и утвержден на заседании педагогического Совета протокол № 1 от 29.08.2023г., приказ № 202 от 29.08.2023г.)
- ООП СОО МБОУ Плодовая СШ (рассмотрена и утверждена на заседании педагогического Совета протокол № 1 от 29.08.2023г., приказ
 № 202 от 29.08.2023г.)
- ✓ Методические рекомендации по созданию и функционированию детских технопарков «Кванториум» на базе общеобразовательных организаций (утв. распоряжением Министерства просвещения Российской Федерации от 12.01.2021 № Р-4).

Программа рассчитана на 66 ч. Контрольных работ – 4, лабораторных работ – 7. Преподавание ведётся по учебнику Физика 11 класс. Г. Я. Мякишева, М. А. Петровой

ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА

Школьный курс физики является системообразующим для естественно-научных предметов, поскольку физические законы, лежащие в основе мироздания, являются основой содержания курсов химии, биологии, географии и астрономии. Изучение физики способствует формированию у обучающихся научного метода познания, который позволяет получать объективные знания об окружающем мире. Для решения задач формирования естественно-научной картины мира, умения объяснять явления и процессы окружающего мира, используя для этого физические знания, особое внимание в процессе изучения физики уделено использованию научного метода познания, постановке проблем, требующих от обучающихся самостоятельной деятельности по их разрешению. Особенностями изложения содержания курса являются:

- соблюдение преемственности в отношении введенных в 7—9 классах определений физических величин, обозначений, формулировок физических законов, использование привычного для обучающихся дидактического аппарата;
- описание сведений и интересных фактов из истории развития физики, роли российских ученых в открытиях и технических изобретениях мирового уровня, достижений современной физики и техники;
- единая методическая схема изложения материала курса: от знакомства с физическими явлениями и процессами до формулировки основных законов и рассмотрения их технических применений;
- уровневая дифференциация учебного материала: в курсе представлен материал (в виде отдельных фрагментов или параграфов) для учащихся, которые интересуются предметом, стремятся расширить свои знания и подготовиться к ЕГЭ по физике;
- использование единой системы заданий, дифференцированных по уровню сложности: вопросов после параграфов, вопросов для обсуждения, примеров решения задач, расчетных задач, тем рефератов и проектов;
- широкая демонстрация проявлений физических закономерностей в быту и технике, обсуждение экологических проблем и путей их решения, связей физики с другими естественными науками;
- политехническая направленность курса: рассмотрение устройства и принципа действия различных технических объектов с использованием физических законов;
- изложение теоретического материала проводится с помощью необходимого минимума математических средств, но обязательно с приведением доказательной базы для физических теорий или законов;

• проведение экспериментальных исследований и проектной деятельности в целях освоения коммуникативных универсальных учебных действий.

Цели и задачи:

Изучение физики на базовом уровне направлено на достижение следующих целей:

- формирование у обучающихся умения видеть и понимать ценность образования, значимость физического знания для каждого человека; умений различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей, формулировать и обосновывать собственную позицию;
- формирование у обучающихся целостного представления о мире и роли физики в создании современной естественно научной картины мира; умения объяснять объекты и процессы окружающей действительности природной, социальной, культурной, технической среды, используя для этого физические знания;
- приобретение обучающимися опыта разнообразной деятельности, опыта познания и самопознания; ключевых навыков (ключевых компетентностей), имеющих универсальное значение для различных видов деятельности, навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, навыков сотрудничества, эффективного и безопасного использования различных технических устройств;
- овладение системой научных знаний о физических свойствах окружающего мира, об основных физических законах и о способах их использования в практической жизни.

Задачи:

- знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;
- приобретение учащимися знаний о световых, электромагнитных и квантовых явлений, физических величинах, характеризующих эти явления;
- формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;
- овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, теоретический вывод, результат экспериментальной проверки;
- понимание учащимися отличий научных данных от непроверенной информации, ценности науки удовлетворения бытовых, производных и культурных потребностей человека;

- усвоение идей единства строения материи и неисчерпаемости процесса ее познания, понимание роли практики в познании физических явлений и законов;
- формирование познавательного интереса к физике и технике, развитие творческих способностей, осознанных мотивов учения; подготовка к продолжению образования и сознательному выбору профессии.

СОДЕРЖАНИЕ

Физическое образование в основной школе должно обеспечить формирование у обучающихся представлений о научной картине мира, ознакомление обучающихся с физическими и астрономическими явлениями, основными принципами работы механизмов, высокотехнологичных устройств и приборов, развитие компетенций в решении инженерно-технических и научно-исследовательских задач.

Освоение учебного предмета направлено на развитие у обучающихся представлений о строении, свойствах, законах существования и движения материи, на освоение обучающимися общих законов и закономерностей природных явлений, создание условий для формирования интеллектуальных, творческих, гражданских, коммуникационных, информационных компетенций. Обучающиеся овладеют научными методами решения различных теоретических и практических задач, умениями формулировать гипотезы, конструировать, проводить эксперименты, оценивать и анализировать полученные результаты, сопоставлять их с объективными реалиями жизни.

Учебный предмет способствует формированию у обучающихся умений безопасно использовать лабораторное оборудование, проводить естественнонаучные исследования и эксперименты, анализировать полученные результаты, представлять и научно аргументировать полученные выводы.

Изучение предмета в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов (наблюдение, измерение, эксперимент, моделирование), освоения практического применения научных знаний физики в жизни основано на межпредметных связях с предметами: математика, информатика, химия, биология, география, экология, основы безопасности жизнедеятельности.

Электродинамика(24 ч)

Постоянный электрический ток (9 ч) Действия электрического тока. Условия существования электрического тока. Сторонние силы. Электрический ток в проводниках. Закон Ома для участка цепи. Сопротивление проводника. Зависимость сопротивления от температуры. [Сверхпроводимость.] Соединение проводников. Работа и мощность электрического тока. Закон Джоуля—Ленца. Измерение силы тока, напряжения и сопротивления в электрической цепи. Электродвижущая сила. Источники тока. Закон Ома для полной цепи.

Электрический ток в средах (5 ч)

Экспериментальные обоснования электронной проводимости металлов. Электрический ток

в растворах и расплавах электролитов. [Закон электролиза Фарадея.] Электрический ток в газах. [Различные типы самостоятельного разряда. Плазма.] Электрический ток в вакууме. Электрический ток в полупроводниках. Полупроводниковые приборы.

Магнитное поле (6 ч)

Магнитные взаимодействия. Магнитное поле токов. Индукция магнитного поля. Линии магнитной индукции. Действие магнитного поля на проводник с током. Закон Ампера. Движение заряженных частиц в магнитном поле. Сила Лоренца. Магнитные свойства вещества.

Электромагнитная индукция (4 ч)

Опыты Фарадея. Магнитный поток. Правило Ленца. Закон электромагнитной индукции. Вихревое электрическое поле. [ЭДС индукции в движущемся проводнике.] Самоиндукция. Индуктивность. Энергия магнитного поля тока.

КОЛЕБАНИЯ И ВОЛНЫ (26 ч)

Механические колебания и волны (7 ч)

Условия возникновения механических колебаний. Две модели колебательных систем.

Кинематика колебательного движения. Гармонические колебания. Динамика колебательного движения. Превращение энергии при гармонических колебаниях. Затухающие колебания. Вынужденные колебания. Резонанс. Механические волны. Волны в среде. Звук.

Электромагнитные колебания и волны (8 ч)

Свободные электромагнитные колебания. Колебательный контур. Формула Томсона. Процессы при гармонических колебаниях в колебательном контуре. Вынужденные электромагнитные колебания. Переменный ток. Действующие значения силы тока и напряжения. Резистор в цепи переменного тока. [Конденсатор и катушка индуктивности в цепи переменного тока. Закон Ома для цепи переменного тока. Резонанс в электрических цепях. Мощность в цепи переменного тока.]Трансформатор. [Производство, передача и использование электрической энергии.]Электромагнитные волны. Принципы радиосвязи и телевидения.

Законы геометрической оптики (5 ч)

Закон прямолинейного распространения света. Закон отражения света Закон преломления света. [Явление полного внутреннего отражения.] Линзы. Формула тонкой линзы. Построение изображений в тонких линзах. Глаз как оптическая система. [Оптические приборы.]

Волновая оптика (4 ч)

Измерение скорости света. Дисперсия света. Принцип Гюйгенса. Интерференция волн. Интерференция света. Дифракционная решетка. Поляризация световых волн.]

Элементы теории относительности (2 ч)

Законы электродинамики и принцип относительности. Опыт Майкельсона. Постулаты специальной теории относительности. Масса, импульс и энергия в специальной теории относительности.

КВАНТОВАЯ ФИЗИКА. АСТРОФИЗИКА (16 ч)

Квантовая физика. Строение атома (5 ч)

Равновесное тепловое излучение. Гипотеза Планка. Законы фотоэффекта.

Давление света. Корпускулярно-волновой дуализм. Гипотеза де Бройля. Планетарная модель атома. Опыты Резерфорда. Постулаты Бора. Модель атома водорода по Бору. [Лазеры.]

Физика атомного ядра. Элементарные частицы (9 ч)

Методы регистрации заряженных частиц. Естественная радиоактивность. Альфа-, бетаи гамма-излучения. Радиоактивные превращения. Закон радиоактивного распада. Изотопы. Искусственное превращение атомных ядер. Протонно-нейтронная модель атомного ядра. Ядерные силы. Энергия связи атомных ядер. Цепные ядерные реакции.

Ядерный реактор. Биологическое действие радиоактивных излучений. Применение радиоактивных изотопов. Термоядерные реакции. [Термоядерный синтез.] Элементарные частицы. Фундаментальные взаимодействия.

Элементы астрофизики (2 ч)

Солнечная система. Солнце. Звезды. Наша Галактика. Пространственно-временные масштабы наблюдаемой Вселенной. Представления об эволюции Вселенной. [Темная материя и темная энергия.]

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО ФИЗИКЕ НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ

Освоение учебного предмета «Физика» на уровне среднего общего образования (базовый уровень) должно обеспечить достижение следующих личностных, метапредметных и предметных образовательных результатов.

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения учебного предмета «Физика» должны отражать готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации основных направлений воспитательной деятельности, в том числе в части:

1) гражданского воспитания:

сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;

принятие традиционных общечеловеческих гуманистических и демократических ценностей;

готовность вести совместную деятельность в интересах гражданского общества, участвовать в самоуправлении в образовательной организации;

умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;

готовность к гуманитарной и волонтёрской деятельности;

2) патриотического воспитания:

сформированность российской гражданской идентичности, патриотизма;

ценностное отношение к государственным символам, достижениям российских учёных в области физики и техники;

3) духовно-нравственного воспитания:

сформированность нравственного сознания, этического поведения;

способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в деятельности учёного;

осознание личного вклада в построение устойчивого будущего;

4) эстетического воспитания:

эстетическое отношение к миру, включая эстетику научного творчества, присущего физической науке;

5) трудового воспитания:

интерес к различным сферам профессиональной деятельности, в том числе связанным с физикой и техникой, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;

готовность и способность к образованию и самообразованию в области физики на протяжении всей жизни;

6) экологического воспитания:

сформированность экологической культуры, осознание глобального характера экологических проблем;

планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества;

расширение опыта деятельности экологической направленности на основе имеющихся знаний по физике;

7) ценности научного познания:

сформированность мировоззрения, соответствующего современному уровню развития физической науки;

осознание ценности научной деятельности, готовность в процессе изучения физики осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Познавательные универсальные учебные действия

Базовые логические действия:

самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;

определять цели деятельности, задавать параметры и критерии их достижения;

выявлять закономерности и противоречия в рассматриваемых физических явлениях;

разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;

вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;

координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

развивать креативное мышление при решении жизненных проблем.

Базовые исследовательские действия:

владеть научной терминологией, ключевыми понятиями и методами физической науки;

владеть навыками учебно-исследовательской и проектной деятельности в области физики, способностью и готовностью к самостоятельному поиску методов решения задач физического содержания, применению различных методов познания;

владеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных проектов в области физики;

выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;

анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;

ставить и формулировать собственные задачи в образовательной деятельности, в том числе при изучении физики;

давать оценку новым ситуациям, оценивать приобретённый опыт;

уметь переносить знания по физике в практическую область жизнедеятельности;

уметь интегрировать знания из разных предметных областей;

выдвигать новые идеи, предлагать оригинальные подходы и решения;

ставить проблемы и задачи, допускающие альтернативные решения.

Работа с информацией:

владеть навыками получения информации физического содержания из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления; оценивать достоверность информации;

использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

создавать тексты физического содержания в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.

Коммуникативные универсальные учебные действия:

осуществлять общение на уроках физики и во вне-урочной деятельности;

распознавать предпосылки конфликтных ситуаций и смягчать конфликты;

развёрнуто и логично излагать свою точку зрения с использованием языковых средств;

понимать и использовать преимущества командной и индивидуальной работы;

выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива;

принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;

оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;

предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;

осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Регулятивные универсальные учебные действия

Самоорганизация:

самостоятельно осуществлять познавательную деятельность в области физики и астрономии, выявлять проблемы, ставить и формулировать собственные задачи;

самостоятельно составлять план решения расчётных и качественных задач, план выполнения практической работы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;

давать оценку новым ситуациям;

расширять рамки учебного предмета на основе личных предпочтений;

делать осознанный выбор, аргументировать его, брать на себя ответственность за решение;

оценивать приобретённый опыт;

способствовать формированию и проявлению эрудиции в области физики, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль, эмоциональный интеллект:

давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;

владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований;

использовать приёмы рефлексии для оценки ситуации, выбора верного решения; уметь оценивать риски и своевременно принимать решения по их снижению; принимать мотивы и аргументы других при анализе результатов деятельности; принимать себя, понимая свои недостатки и достоинства; принимать мотивы и аргументы других при анализе результатов деятельности;

признавать своё право и право других на ошибки.

В процессе достижения личностных результатов освоения программы по физике для уровня среднего общего образования у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:

самосознания, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе;

саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;

внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать исходя из своих возможностей;

эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении общения, способность к сочувствию и сопереживанию;

социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу обучения в **11 классе** предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений: демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей, целостность и единство физической картины мира;

учитывать границы применения изученных физических моделей: точечный электрический заряд, луч света, точечный источник света, ядерная модель атома, нуклонная модель атомного ядра при решении физических задач;

распознавать физические явления (процессы) и объяснять их на основе законов электродинамики и квантовой физики: электрическая проводимость, тепловое, световое, химическое, магнитное действия тока, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и движущийся заряд, электромагнитные колебания и волны, прямолинейное распространение света, отражение, преломление, интерференция, дифракция и поляризация света, дисперсия света, фотоэлектрический эффект (фотоэффект), световое давление, возникновение линейчатого спектра атома водорода, естественная и искусственная радиоактивность;

описывать изученные свойства вещества (электрические, магнитные, оптические, электрическую проводимость различных сред) и электромагнитные явления (процессы), используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, разность потенциалов, электродвижущая сила, работа тока, индукция магнитного поля, сила Ампера, сила Лоренца, индуктивность катушки, энергия электрического и магнитного полей, период и частота колебаний в колебательном контуре, заряд и сила тока в процессе гармонических электромагнитных колебаний, фокусное расстояние и оптическая сила линзы, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами;

описывать изученные квантовые явления и процессы, используя физические величины: скорость электромагнитных волн, длина волны и частота света, энергия и импульс фотона, период полураспада, энергия связи атомных ядер, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

анализировать физические процессы и явления, используя физические законы и принципы: закон Ома, законы последовательного и параллельного соединения проводников, закон Джоуля—Ленца, закон электромагнитной индукции, закон прямолинейного распространения света, законы отражения света, законы преломления света, уравнение Эйнштейна для фотоэффекта, закон сохранения энергии, закон сохранения импульса, закон сохранения электрического заряда, закон сохранения массового числа, постулаты Бора, закон радиоактивного распада, при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости; определять направление вектора индукции магнитного поля проводника с током, силы Ампера и силы Лоренца;

строить и описывать изображение, создаваемое плоским зеркалом, тонкой линзой;

выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений: при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;

осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;

исследовать зависимости физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников, критически анализировать получаемую информацию;

объяснять принципы действия машин, приборов и технических устройств, различать условия их безопасного использования в повседневной жизни;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, в объяснение процессов окружающего мира, в развитие техники и технологий;

использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

Учебно-тематический план

Раздел	Тема	Количество	В том числе
		часов	контр. Раб.
Фаза постановки и решения системы учебных задач			
I	Электродинамика	24	1
II	Колебания и волны	26	2
III	Квантовая физика. Астрофизика	16	1
Резерв			
Итого		66	4