муниципальное бюджетное общеобразовательное учреждение «Плодовая средняя школа имени Н.А.Волкова»

PACCMOTPEHO:

на заседании школьного М/О протокол № 1 от 31 августа 2023 г.

СОГЛАСОВАНО:

Заместитель директора по УВР

Двойкова Л.Н.

31 августа 2023 г.

УТВЕРЖДАЮ:

Директор МБОУ Плодовая СШ

И.Р. Нуртдинов

Приказ № 218 от 31,08.2023 г.

МБОУ ПЛОДОВАЯ СШ

РАБОЧАЯ ПРОГРАММА ПО ФИЗИКЕ

9 КЛАСС

Количество часов: 99

Учитель: Чистов Иван Викторович

2023/2024 учебный год

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа курса «Физики» для 9 класса МБОУ «Плодовая средняя школа имени Н.А.Волкова» составлена в соответствии со следующими нормативными документами:

- Федеральный закон от 29.12.2012 г. № 273-ФЗ (ред. От 31.07.2020г.) «Об образовании в Российской Федерации» (с изм. и доп., вступил в силу с 01.09.2020)
- ✓ Федеральный государственный образовательный стандарт среднего общего образования (Утверждён приказом Министерства образования и науки Российской Федерации от 17 мая 2012 г. N 413) (ред.11.12.2020)
- ✓ Государственная программа Российской Федерации «Развитие образования» (Утверждена Постановлением Правительства РФ от 26.12.2017 N 1642 (ред. от 22.02.2021) «Об утверждении государственной программы Российской Федерации «Развитие образования» дата обращения: 10.03.2021)
- ✓ Приказ Министерства просвещения Российской Федерации от 18.05.2023 № 370 "Об утверждении федеральной образовательной программы основного общего образования"
- ✓ СанПиН 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи» №28 от 28.09.2020г.
- ✓ Физика. 7-9 классы: рабочие программы по учебникам А.В. Перышкина, Ф50 Е.М. Гутник / авт.-сост. Г.Г. Телюкова.-Изд. 2-е. – Волгоград: Учитель, 2018. – 82 с.
- Учебный план МБОУ Плодовая СШ (рассмотрен и утвержден на заседании педагогического Совета протокол № 1 от 29.08.2023г., приказ № 202 от 29.08.2023г.)
- ООП СОО МБОУ Плодовая СШ (рассмотрена и утверждена на заседании педагогического Совета протокол № 1 от 29.08.2023г., приказ № 202 от 29.08.2023г.)
- ✓ Методические рекомендации по созданию и функционированию детских технопарков «Кванториум» на базе общеобразовательных организаций (утв. распоряжением Министерства просвещения Российской Федерации от 12.01.2021 № Р-4).

Программа рассчитана на 99 ч. Контрольных работ – 5, лабораторных работ – 6. Преподавание ведётся по учебнику Физика 9 класс. А.В. Пёрышкин, А.И. Иванов. Просвещение, М., 2021г.

Обучение осуществляется при поддержке Центра образования естественно-научной направленности «**Точка роста»**, который создан для развития у обучающихся естественно-научной, математической, информационной грамотности, формирования критического и креативного мышления, совершенствования навыков естественно-научной направленности, а также для практической отработки учебного материала по учебному предмету «Физика».

ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА

Школьный курс физики - системообразующий для естественнонаучных учебных предметов, поскольку физические законы лежат в основе содержания курсов химии, биологии, географии и астрономии.

Физика -наука, изучающая наиболее общие закономерности явлений природы, свойства и строение материи, законы ее движения. Основные понятия физики и ее законы используются во всех естественных науках.

Физика изучает количественные закономерности природных явлений и относится к точным наукам. Вместе с тем гуманитарный потенциал физики в формировании общей картины мира и влиянии на качество жизни человечества очень высок.

Физика -экспериментальная наука, изучающая природные явления опытным путем. Построением теоретических моделей физика дает объяснение наблюдаемых явлений, формулирует физические законы, предсказывает новые явления, создает основу для применения открытых законов природы в человеческой практике. Физические законы лежат в основе химических, биологических, астрономических явлении. В силу отмеченных особенностей физики ее можно считать основой всех естественных наук.

В современном мире роль физики непрерывно возрастает, так как она является основой научно-технического прогресса. Использование знаний по физике необходимо каждому для решения практических задач в повседневной жизни. Устройство и принцип действия большинства применяемых. в быту и технике приборов и механизмов вполне могут стать хорошей иллюстрацией к изучаемым вопросам.

Цели изучения физики в основной школе следующие:

- развитие интересов и способностей. учащихся на основе передачи им знаний и опыта познавательной и творческой деятельности;
- понимание учащимися смысла основных научных понятий и законов физики, взаимосвязи между ними;
- формирование у учащихся представлении о физической картине мира.

Достижение этих целей обеспечивается решением следующих задач:

- знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;
- приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;
- формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;

- овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;
- понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

СОДЕРЖАНИЕ КУРСА ФИЗИКИ В 9 КЛАССЕ

Повторение материала 8 класса (3 часа)

І. Законы взаимодействия и движения тел. (34 часа)

Материальная точка. Траектория. Скорость. Перемещение. Система отсчета. Определение координаты движущего тела. Графики зависимости кинематических величин от времени. Прямолинейное равноускоренное движение. Скорость равноускоренного движения. Перемещение при равноускоренном движении. Определение координаты движущего тела. Графики зависимости кинематических величин от времени. Ускорение. Относительность механического движения. Инерциальная система отсчета. Первый закон Ньютона. Второй закон Ньютона. Третий закон Ньютона. Свободное падение Закон Всемирного тяготения. Криволинейное движение Движение по окружности. Искусственные спутники Земли. Ракеты. Импульс. Закон сохранения импульса. Реактивное движение. Движение тела брошенного вертикально вверх. Движение тела брошенного под углом к горизонту. Движение тела брошенного горизонтально. Ускорение свободного падения на Земле и других планетах.

Фронтальные лабораторные работы.

- 1. Исследование равноускоренного движения без начальной скорости.
- 2.Измерение ускорения свободного падения.

II. Механические колебания и волны. Звук. (13 часов)

Механические колебания. Амплитуда. Период, частота. Свободные колебания. Колебательные системы. Маятник. Зависимость периода и частоты нитяного маятника от длины нити. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Механические волны. Длина волны. Продольные и поперечные волны. Скорость распространения волны. Звук. Высота и тембр звука. Громкость звука/ Распространение звука. Скорость звука. Отражение звука. Эхо. Резонанс.

Фронтальная лабораторная работа.

3. Исследование зависимости периода и частоты свободных колебаний математического маятника от его длины.

III. Электромагнитные явления. (23 часа)

Действие магнитного поля на электрические заряды. Графическое изображение магнитного поля. Направление тока и направление его магнитного поля. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Магнитный поток. Электромагнитная индукция. Явление электромагнитной индукции. Получение переменного электрического тока.

Электромагнитное поле. Неоднородное и неоднородное поле. Взаимосвязь электрического и магнитного полей. Электромагнитные волны. Скорость распространения электромагнитных волн. Электродвигатель. Электрогенератор. Свет – электромагнитная волна.

Фронтальная лабораторная работа.

4. Изучение явления электромагнитной индукции.

I V. Строение атома и атомного ядра (16 часов)

Радиоактивность. Альфа-, бетта- и гамма-излучение. Опыты по рассеиванию альфа-частиц. Планетарная модель атома. Атомное ядро. Протонно-нейтронная модель ядра. Методы наблюдения и регистрации частиц. Радиоактивные превращения. Экспериментальные методы. Заряд ядра. Массовое число ядра. Ядерные реакции. Деление и синтез ядер. Сохранение заряда и массового числа при ядерных реакциях. Открытие протона и нейтрона. Ядерные силы. Энергия связи частиц в ядре.

Энергия связи. Дефект масс. Выделение энергии при делении и синтезе ядер. Использование ядерной энергии. Дозиметрия. Ядерный реактор. Преобразование Внутренней энергии ядер в электрическую энергию. Атомная энергетика. Термоядерные реакции. Биологическое действие радиации.

Фронтальная лабораторная работа.

- 5.Изучение деления ядра атома урана по фотографии треков.
- 6.Изучение треков заряженных частиц по готовым фотографиям.

V. Строение и эволюция Вселенной (6 часов)

Состав, строение и происхождение Солнечной системы. Большие тела Солнечной системы. Малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.

Обобщающее повторение курса 9 класса (4 часов)

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО ФИЗИКЕ НА УРОВНЕ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

Изучение физики на уровне основного общего образования направлено на достижение личностных, метапредметных и предметных образовательных результатов.

В результате изучения физики на уровне основного общего образования у обучающегося будут сформированы следующие личностные результаты в части:

1) патриотического воспитания:

- - проявление интереса к истории и современному состоянию российской физической науки;
- - ценностное отношение к достижениям российских учёных--физиков;

2) гражданского и духовно-нравственного воспитания:

- -готовность к активному участию в обсуждении общественно значимых и этических проблем, связанных с практическим применением достижений физики;
- - осознание важности морально--этических принципов в деятельности учёного;

3) эстетического воспитания:

• - восприятие эстетических качеств физической науки: её гармоничного построения, строгости, точности, лаконичности;

4) ценности научного познания:

- - осознание ценности физической науки как мощного инструмента познания мира, основы развития технологий, важнейшей составляющей культуры;
- - развитие научной любознательности, интереса к исследовательской деятельности;

5) формирования культуры здоровья и эмоционального благополучия:

- - осознание ценности безопасного образа жизни в современном технологическом мире, важности правил безопасного поведения на транспорте, на дорогах, с электрическим и тепловым оборудованием в домашних условиях;
- - сформированность навыка рефлексии, признание своего права на ошибку и такого же права у другого человека;

6) трудового воспитания:

- - активное участие в решении практических задач (в рамках семьи, образовательной организации, города, края) технологической и социальной направленности, требующих в том числе и физических знаний;
- -интерес к практическому изучению профессий, связанных с физикой;

7) экологического воспитания:

- - ориентация на применение физических знаний для решения задач в области окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды;
- - осознание глобального характера экологических проблем и путей их решения;

8) адаптации к изменяющимся условиям социальной и природной среды:

- - потребность во взаимодействии при выполнении исследований и проектов физической направленности, открытость опыту и знаниям других;
- - повышение уровня своей компетентности через практическую деятельность;
- - потребность в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы о физических объектах и явлениях;
- - осознание дефицитов собственных знаний и компетентностей в области физики;
- - планирование своего развития в приобретении новых физических знаний;
- - стремление анализировать и выявлять взаимосвязи природы, общества и экономики, в том числе с использованием физических знаний;
- - оценка своих действий с учётом влияния на окружающую среду, возможных глобальных последствий.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

В результате освоения программы по физике на уровне основного общего образования у обучающегося будут сформированы метапредметные результаты, включающие познавательные универсальные учебные действия, коммуникативные универсальные учебные действия, регулятивные универсальные учебные действия.

Познавательные универсальные учебные действия

Базовые логические действия:

- выявлять и характеризовать существенные признаки объектов (явлений);
- устанавливать существенный признак классификации, основания для обобщения и сравнения;
- выявлять закономерности и противоречия в рассматриваемых фактах, данных и наблюдениях, относящихся к физическим явлениям;
- выявлять причинно--следственные связи при изучении физических явлений и процессов, делать выводы с использованием дедуктивных и индуктивных умозаключений, выдвигать гипотезы о взаимосвязях физических величин;
- самостоятельно выбирать способ решения учебной физической задачи (сравнение нескольких вариантов решения, выбор наиболее подходящего с учётом самостоятельно выделенных критериев).

Базовые исследовательские действия:

• использовать вопросы как исследовательский инструмент познания;

- проводить по самостоятельно составленному плану опыт, несложный физический эксперимент, небольшое исследование физического явления;
- оценивать на применимость и достоверность информацию, полученную в ходе исследования или эксперимента;
- самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, опыта, исследования;
- прогнозировать возможное дальнейшее развитие физических процессов, а также выдвигать предположения об их развитии в новых условиях и контекстах.

Работа с информацией:

- применять различные методы, инструменты и запросы при поиске и отборе информации или данных с учётом предложенной учебной физической задачи;
- анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
- самостоятельно выбирать оптимальную форму представления информации и иллюстрировать решаемые задачи несложными схемами, диаграммами, иной графикой и их комбинациями.

Коммуникативные универсальные учебные действия:

- в ходе обсуждения учебного материала, результатов лабораторных работ и проектов задавать вопросы по существу обсуждаемой темы и высказывать идеи, нацеленные на решение задачи и поддержание благожелательности общения;
- сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций;
- выражать свою точку зрения в устных и письменных текстах;
- публично представлять результаты выполненного физического опыта (эксперимента, исследования, проекта);
- понимать и использовать преимущества командной и индивидуальной работы при решении конкретной физической проблемы;
- принимать цели совместной деятельности, организовывать действия по её достижению: распределять роли, обсуждать процессы и результаты совместной работы, обобщать мнения нескольких людей;
- выполнять свою часть работы, достигая качественного результата по своему направлению и координируя свои действия с другими членами команды;
- оценивать качество своего вклада в общий продукт по критериям, самостоятельно сформулированным участниками взаимодействия.

Регулятивные универсальные учебные действия

Самоорганизация:

- выявлять проблемы в жизненных и учебных ситуациях, требующих для решения физических знаний;
- ориентироваться в различных подходах принятия решений (индивидуальное, принятие решения в группе, принятие решений группой);
- самостоятельно составлять алгоритм решения физической задачи или плана исследования с учётом имеющихся ресурсов и собственных возможностей, аргументировать предлагаемые варианты решений;
- делать выбор и брать ответственность за решение.

Самоконтроль, эмоциональный интеллект:

- давать адекватную оценку ситуации и предлагать план её изменения;
- объяснять причины достижения (недостижения) результатов деятельности, давать оценку приобретённому опыту;
- вносить коррективы в деятельность (в том числе в ход выполнения физического исследования или проекта) на основе новых обстоятельств, изменившихся ситуаций, установленных ошибок, возникших трудностей;
- оценивать соответствие результата цели и условиям;
- ставить себя на место другого человека в ходе спора или дискуссии на научную тему, понимать мотивы, намерения и логику другого;
- признавать своё право на ошибку при решении физических задач или в утверждениях на научные темы и такое же право другого.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу обучения в 9 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

- использовать понятия: система отсчёта, материальная точка, траектория, относительность механического движения, деформация (упругая, пластическая), трение, центростремительное ускорение, невесомость и перегрузки, центр тяжести, абсолютно твёрдое тело, центр тяжести твёрдого тела, равновесие, механические колебания и волны, звук, инфразвук и ультразвук, электромагнитные волны, шкала электромагнитных волн, свет, близорукость и дальнозоркость, спектры испускания и поглощения, альфа-, бета- и гамма-излучения, изотопы, ядерная энергетика;
- различать явления (равномерное и неравномерное прямолинейное движение, равноускоренное прямолинейное движение, свободное падение тел, равномерное движение по окружности, взаимодействие тел, реактивное движение, колебательное

- движение (затухающие и вынужденные колебания), резонанс, волновое движение, отражение звука, прямолинейное распространение, отражение и преломление света, полное внутреннее отражение света, разложение белого света в спектр и сложение спектральных цветов, дисперсия света, естественная радиоактивность, возникновение линейчатого спектра излучения) по описанию их характерных свойств и на основе опытов, демонстрирующих данное физическое явление;
- распознавать проявление изученных физических явлений в окружающем мире (в том числе физические явления в природе: приливы и отливы, движение планет Солнечной системы, реактивное движение живых организмов, восприятие звуков животными, землетрясение, сейсмические волны, цунами, эхо, цвета тел, оптические явления в природе, биологическое действие видимого, ультрафиолетового и рентгеновского излучений, естественный радиоактивный фон, космические лучи, радиоактивное излучение природных минералов, действие радиоактивных излучений на организм человека), при этом переводить практическую задачу в учебную, выделять существенные свойства (признаки) физических явлений;
- описывать изученные свойства тел и физические явления, используя физические величины (средняя и мгновенная скорость тела при неравномерном движении, ускорение, перемещение, путь, угловая скорость, сила трения, сила упругости, сила тяжести, ускорение свободного падения, вес тела, импульс тела, импульс силы, механическая работа и мощность, потенциальная энергия тела, поднятого над поверхностью земли, потенциальная энергия сжатой пружины, кинетическая энергия, полная механическая энергия, период и частота колебаний, длина волны, громкость звука и высота тона, скорость света, показатель преломления среды), при описании правильно трактовать физический смысл используемых величин, обозначения и единицы физических величин, находить формулы, связывающие данную физическую величину с другими величинами, строить графики изученных зависимостей физических величин;
- характеризовать свойства тел, физические явления и процессы, используя закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, принцип относительности Галилея, законы Ньютона, закон сохранения импульса, законы отражения и преломления света, законы сохранения зарядового и массового чисел при ядерных реакциях, при этом давать словесную формулировку закона и записывать его математическое выражение;
- объяснять физические процессы и свойства тел, в том числе и в контексте ситуаций практико-ориентированного характера: выявлять причинно--следственные связи, строить объяснение из 2–3 логических шагов с опорой на 2–3 изученных свойства физических явлений, физических законов или закономерностей;
- решать расчётные задачи (опирающиеся на систему из 2–3 уравнений), используя законы и формулы, связывающие физические величины: на основе анализа условия задачи записывать краткое условие, выявлять недостающие или

- избыточные данные, выбирать законы и формулы, необходимые для решения, проводить расчёты и оценивать реалистичность полученного значения физической величины;
- распознавать проблемы, которые можно решить при помощи физических методов, используя описание исследования, выделять проверяемое предположение, оценивать правильность порядка проведения исследования, делать выводы, интерпретировать результаты наблюдений и опытов;
- проводить опыты по наблюдению физических явлений или физических свойств тел (изучение второго закона Ньютона, закона сохранения энергии, зависимость периода колебаний пружинного маятника от массы груза и жёсткости пружины и независимость от амплитуды малых колебаний, прямолинейное распространение света, разложение белого света в спектр, изучение свойств изображения в плоском зеркале и свойств изображения предмета в собирающей линзе, наблюдение сплошных и линейчатых спектров излучения): самостоятельно собирать установку из избыточного набора оборудования, описывать ход опыта и его результаты, формулировать выводы;
- проводить при необходимости серию прямых измерений, определяя среднее значение измеряемой величины (фокусное расстояние собирающей линзы), обосновывать выбор способа измерения (измерительного прибора);
- проводить исследование зависимостей физических величин с использованием прямых измерений (зависимость пути от времени при равноускоренном движении без начальной скорости, периода колебаний математического маятника от длины нити, зависимости угла отражения света от угла падения и угла преломления от угла падения): планировать исследование, самостоятельно собирать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
- проводить косвенные измерения физических величин (средняя скорость и ускорение тела при равноускоренном движении, ускорение свободного падения, жёсткость пружины, коэффициент трения скольжения, механическая работа и мощность, частота и период колебаний математического и пружинного маятников, оптическая сила собирающей линзы, радиоактивный фон): планировать измерения, собирать экспериментальную установку и выполнять измерения, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учётом заданной погрешности измерений;
- соблюдать правила техники безопасности при работе с лабораторным оборудованием;
- различать основные признаки изученных физических моделей: материальная точка, абсолютно твёрдое тело, точечный источник света, луч, тонкая линза, планетарная модель атома, нуклонная модель атомного ядра;

- характеризовать принципы действия изученных приборов и технических устройств с опорой на их описания (в том числе: спидометр, датчики положения, расстояния и ускорения, ракета, эхолот, очки, перископ, фотоаппарат, оптические световоды, спектроскоп, дозиметр, камера Вильсона), используя знания о свойствах физических явлений и необходимые физические закономерности;
- использовать схемы и схематичные рисунки изученных технических устройств, измерительных приборов и технологических процессов при решении учебно--практических задач, оптические схемы для построения изображений в плоском зеркале и собирающей линзе;
- приводить примеры (находить информацию о примерах) практического использования физических знаний в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- осуществлять поиск информации физического содержания в Интернете, самостоятельно формулируя поисковый запрос, находить пути определения достоверности полученной информации на основе имеющихся знаний и дополнительных источников;
- использовать при выполнении учебных заданий научно--популярную литературу физического содержания, справочные материалы, ресурсы сети Интернет, владеть приёмами конспектирования текста, преобразования информации из одной знаковой системы в другую;
- создавать собственные письменные и устные сообщения на основе информации из нескольких источников физического содержания, публично представлять результаты проектной или исследовательской деятельности, при этом грамотно использовать изученный понятийный аппарат изучаемого раздела физики и сопровождать выступление презентацией с учётом особенностей аудитории сверстников.

Учебно-тематический план

Раздел	Тема	Количество	В том числе	
		часов	контр. Раб.	
Фаза запуска (совместное проектирование и планирование учебного года)				
I	Повторение материала 8 класса	3		

Фаза постановки и решения системы учебных задач				
II	Законы взаимодействия и движения тел	34	1	
III	Механические колебания и волны	13	1	
IV	Электромагнитные явления	23	1	
V	Строения атома и атомного ядра	16	1	
VI	Строение и эволюция вселенной	6		
Рефлексивная фаза				
VII	Обобщающие повторение	4	1	
Резерв				
Итого		99	5	

УЧЕБНО-МЕТОДИЧЕСКОЕ ОСНАЩЕНИЕ УЧЕБНОГО ПРОЦЕССА

Интернет-ресурсы:

- 1. Библиотека —всё по предмету «Физика». —Режим доступа :www.proshkolu,ru
- 2. Видеоопыты на уроках, —Режим доступа: http://fizika-class.narod.ru
- 3. Единая коллекция цифровых образовательных ресурсов. —Режим доступа : http://school.<u>llection.edu.ru</u>
- 4. Интересные материалы к урокам физики по темам; тесты по темам• наглядные пособия к урокам. —Режим доступа : http://classanfizika.narod.ru
- 5. Цифровые образовательные ресурсы.
- 6. Электронные учебники физике.

Цифровые образовательные ресурсы и оборудование: Цифровая лаборатория «Точка роста», виртуальная лаборатория «Виртуальная реальность 3D», передвижная интерактивная панель с ОС «Андроид», Windows, интерактивная доска «Board», короткофокусный проектор, ноутбуки, рабочее место учителя, web-камера, цветной принтер, лабораторный комплект «Механика», «Электричество», «Термодинамика», «Оптика» и «Ядерная физика».